A new fully biodegradable plastic from tomato skin

di Chiara Catgiu

A new fully sustainable and biodegradable plastic has been obtained from the tomato peel and it has been discovered starting from different projects and collaborations.

The EU-funded BIOPROTO (Bioplastic production from tomato peel residues) project main objective is in fact the fabrication of bio-plastics from the tomato fruit peel residues. They are an abundant and inexpensive waste from processing tomato industries rich in polysaccharides (chiefly cellulose, pectin and hemicelluloses) and lipids (soluble waxes and a non-soluble long- chain biopolyester named cutin). Specifically, the project is focused on the bio-mimicry of the plant cuticle that is the protective and outermost membrane that covers the plant epidermis of parts of plant organs exposed to air.

Schermata 2017-07-20 alle 23.15.18

The main aim in this project, the production of plant cuticle-like plastics has been divided in two: first, the synthesis and characterization of plant cuticle-like polymers from model substances and, second, the production of tomato peel plastics. These agro-wastes have been chosen because they have an elevated amount of cutin and the crop of tomatoes is an important business in the sector of the agriculture.

The European tomato processing industry processed 11,380,100 tonnes of raw tomatoes in 2004. Italy is by far the most important producer of processed tomatoes in Europe with a 53% share of European production followed by Spain (22%) and Portugal and Greece (10% each). Other minor producers include France and some of the new member countries, in particular Hungary and Poland. Nowadays, this inexpensive sub-product, tomato pomace, is used as animal feed.

Since the beginning of the project, different approaches have been developed to produce these new bio-plastics, Basically, they have consisted of a chemical synthesis in a very strong acid medium, a self-assembly process in water and diverse green and soft industrial processes. Also, a comprehensive study of the refinery of the tomato fruit peel residue from a perspective of IR and Raman spectroscopies has been carried out. On the other hand, interestingly, a new set of films and coatings from the lipid fraction of plant cuticles has been produced and characterized.

Despite the inherent difficulty of the combination of polysaccharides and lipids, main results achieved so far are ascribed to the development of a scale-up process for the fabrication of lipid- cellulose materials (bio-plastics) with potential applications in food packaging. Additionally, the critical reviews on IR and Raman features of plant cuticles has generated significant interest among specialists in the field.1

Another interesting and similar research project is taking place at the Italian Institute of Technology in Genova, Italy, in collaboration with the Centre for Scientific Research of Spain and the University of Malaga.

“It takes up to 4 years of research to get a product ready to be launched on the market – says Athanassia Athanassiou, IIT researcher and manager of the Smart Materials research group – taking inspiration from nature we have reproduced in the laboratory a biocompatible, biodegradable plastic coating 100% obtained from pepper and tomato peel and which retains the properties of the original product.“ 2

Schermata 2017-07-20 alle 23.15.31

Natural occurring polyhydroxylated fatty acids from tomato peels are excellent raw substances for the fabrication of different materials such as free-standing films, cellulose composites and coatings for cans.

They can be easily polymerized, by using a solvent-free melt-state process in very short times. The resultant materials shows a high hydrophobicity, good water and oxygen barrier properties, low opacity values, full biodegradability, and high adhesion to different metal substances.

Schermata 2017-07-20 alle 23.15.41

The main potentially exploitable markets are packaging, paper industry, textile industry, health care and food industry.

The same project developed at the Centre for Scientific Research of Spain and the University of Malaga aims instead at exploiting the natural viscoelastic properties of tomato peel, as well as its waterproof nature and protection capacity against other liquids, as well as parasites; a discovery that could also in principle be extended to other vegetables, such as bell peppers. However, scientists have prioritized tomatoes, particularly because the industry tends to discard the peel, which is usually discarded after the tomatoes are peeled for canning.

Schermata 2017-07-20 alle 23.15.53

The Professor of biochemistry Antonio Heredia and the scientist José Jesús Benítez, co-authors of the research study of the IIT, have worked with various kinds of vegetables until this discovery was made and patented. The most notable development from an environmental standpoint, also in this case, is the minimal impact that this use of the peel has, with the plastics produced being also biodegradable in the short term.

In this research, through a process of in vitro depolymerization, the original tomato polymer degrades its monomers and is polymerized again through chemical reactions to obtain a “plastic”

that has the properties of the shell of vegetables, but whose size or thickness can be shaped to meet specific needs.

Also here, in terms of industrial applications, trials have aimed primarily at coating aluminium cans containing beverages with imperceptible nanolayers in some cases. 3

Currently, petroleum-derived products are used to prevent drinks from coming into contact with the aluminium. Some of these components are banned for use in products for children; a problem which could be solved with these new fully sustainable alternatives.

The potential impact on society of this new material is threefold: first, these new bio-plastics are biodegradable with no adverse effects on the environment. Secondly, an inexpensive agro-waste (tomato peel) with costs to be removed is recycled and used as raw material. Last but not least, the fabrication of these bio-plastics and the use of tomato peels could generate new business and employment opportunities in the future.

1 http://cordis.europa.eu/result/rcn/190641_en.html

2 J. Heredia-Guerrero, J. Benítez, P. Cataldi, U. Paul, M. Contardi, R. Cingolani, I. Bayer, A. Heredia and A. Athanassiou, “All Natural Sustainable Packaging Materials Inspired by Plant Cuticles”, Advanced Sustainable Systems, 2017, 1600024

3 http://www.freshplaza.com/article/140244/Tomato-peel-transformed-into-biodegradable-plastic

Materials for the Circular Economy

di Chiara Catgiu

A linear economy, that extracts resources at increasing rates, according to the principles of take-make-dispose, without consideration of the environment in which it operates, cannot continue indefinitely. The concept of a circular economy promises a way out. Here products do not quickly become waste, but they are reused to extract their maximum value before safely and productively returning to the biosphere.1

Schermata 2017-07-14 alle 22.37.12

Materials play an essential role in circular economy. By designing products with materials that come from, and safely flow, into their respective nutrient cycles, they can be part of creating an optimized materials economy that eliminates the concept of waste.2

Not long ago, materials selection was considered a small part of the design process. The selection of a material for a specific purpose is a lengthy and expensive process. Approximately always more than one material is suitable for an application, and the final selection is a compromise that brings some advantages as well as disadvantages. Material selection is an interdisciplinary effort and it often requires different fields of study such as material science and engineering, mechanical engineering, industrial engineering and other experts in the field of application.3

Schermata 2017-07-14 alle 21.05.03Traditionally, materials selection for the design of facilities is based on economic and technological considerations, given the desired life span of a facility and the program of requirements and codes it must meet.

In design environments where ecological, health, and ethical impacts are increasingly important, often the only way to choose from many different material alternatives is by relying on experience and observation. In selecting materials, designers have to take into account a large number of factors, including sustainability, durability, recyclability and materials impact on environment.

Schermata 2017-07-14 alle 21.07.19

A sustainable material or a sustainable resource is something whose production is supported indefinitely by nature, which means, a resource is used up at the same speed that it is renewed. From the moment the raw materials are extracted to the moment the final product is disposed of, there must be no permanent damage to the environment.4

By integrating environmentally sustainable materials into design projects, it is possible to significantly reduce environmental impacts through less energy consumption, less natural resource depletion and pollution, plus less toxicity for both the occupants and the entire ecosystem.

These both minimize the negative impacts on the environment and occupants whilst maximizing positive impacts over the lifecycle of a design facility. But little research has yet focused on designers’ choices of sustainable materials and those that have demonstrated on the whole that sustainable materials selection is not a priority.5

Schermata 2017-07-14 alle 21.10.00

The circular economy illustrates a model, by operating in many different ways, which suggests:

  • Tight inner circles where minimum new materials are used before materials can be re-used, refurbished or re-manufactured. Such products offer the greatest savings in terms of embedded costs, materials, energy and labor. They also offer the greatest savings on environmental effects or externalities such as emissions to air, land or water, including reducing greenhouse gas emissions;
  • Circles of use where the number of times materials can be used through consecutive circles is increased. Re-use, remanufacture or recycling is used to achieve this objective;
  • Cascade use, where materials are recovered, re-engineered and cascaded into new uses from that originally envisaged. Good examples are recovered plastics used as insulation materials rather than packaging or cotton cascaded into a series of uses once it is no longer suitable for recovery and re-use in clothing;
  • Pure circles, where uncontaminated materials are returned for re-use in primary manufacturing. 6

This type of research will continue, as society understands the potential to use secondary materials from waste as a primary source for new design products, in a completely circular economy model.

E. M. Foundation, “Towards the Circular Economy,” 2013.

E. M. Foundation, “The Circular Design Guide,” 2016.

A. Jahan et al., “Material Screening and Choosing Methods – A Review,” Materials and Design, vol. 31, pp. 696–705.

M. F. Ashby, “Materials Selection in Mechanical Design”, Third edit. 2005.

C. S. Hayles, “Environmentally sustainable interior design: A snapshot of current supply of and demand for green, sustainable or Fair Trade products for interior design practice”, International Journal of Sustainable Built Environment, vol. 4, pp. 100-108.

ISWA, “Circular economy: trends and emerging ideas”, 2015.

Clear Wood, il nuovo appeal del legno

di Naike Cogliati

Potreste mai immaginare di usare il legno per produrre celle solari trasparenti? Ebbene sì, fra qualche anno sarà possibile e nel frattempo un team del KTH Reale Institute of Technology di Stoccolma sta mettendo a punto il cosiddetto ‘legno trasparente’, ovvero un tipo di impiallacciatura in cui il componente delle pareti cellulari viene spogliato chimicamente.


Non a caso tutto ciò avviene in Svezia,  la mecca del legno, l’unico paese in cui il 90% delle case sono di legno e in cui il trattamento di quest’ultimo è divenuto una cultura.

L’esperto di biomateriali Lars Berglund, ricercatore guida del team, ha ideato una tecnica per creare un legno trasparente con una trasmittanza ottica dell’85% e facile da produrre a livello industriale.
La “magia” avviene nel momento in cui dal legno viene rimossa chimicamente la lignina, un polimero organico responsabile del colore giallognolo del legno che insieme alla cellulosa costituiscono le pareti cellulari, le quali assorbono la luce.


Il legno diventando, a seguito del processo, di colore bianco, necessita successivamente una modifica della sua struttura nanoscopica per ottenere l’effetto trasparente.
Attraverso l’aggiunta del metilmetacrilato prepolimerizzato (PMMA), un polimero a ridotta tossicità, viene modificato l’indice di rifrazione del materiale, per cui, a seconda delle applicazioni richieste, sarà possibile variarne la trasparenza.


Gli studiosi statunitensi della University of Maryland hanno tentato invece con la resina epossidica, ottenendo un materiale da quattro a sei volte più resistente e che ha permesso di usare i tessuti del legno che trasportano la linfa, dopo averli riallineati verticalmente, come passaggi per filtrare la luce.


Nel materiale così ottenuto è possibile osservare il floema e lo xilema, i due tessuti che nei vegetali hanno il compito di trasportare le sostanze nutritive, la linfa grezza nel caso dello xilema, la linfa elaborata nel caso del floema.

Tramite tale processo si mantiene quindi la struttura portante del legno, lo si rende trasparente, e allo stesso tempo più forte.
Il legno potrà così soppiantare l’uso del vetro tradizionale a base di silicio e diventare ancora più vantaggioso per la sua intrinseca resistenza, tenacità, bassa densità e bassa conducibilità termica.


Pensiamo anche all’uso del legno per le finestre, i pannelli solari, ma soprattutto come principale componente edilizio per la costruzione di abitazioni a minore impatto ambientale.
Si tratta infatti di un materiale dal forte isolamento termico, non completamente trasparente ma comunque in grado di garantire il passaggio di una grande quantità di luce e di conseguenza l’efficienza energetica dei vari dispositivi eco-compatibili che aumenterebbe del 30%.

Un vecchio e antichissimo materiale che, ripensato e “annegato” nella tecnologia, diventa più forte dell’acciaio ma notevolmente più leggero di quest’ultimo.
Resta allora da chiedersi se abbiamo bisogno che questo nuovo materiale soppianti totalmente l’uso del vetro; di certo i presupposti sono molto buoni, ma solo il tempo e gli sviluppi futuri ci diranno se questa innovazione avrà davvero successo.


DESIGN FOR MATERIAL is a module of the “Design for Enterprises” training course, completely free and online for European SMEs, designers and intermediary organization by European Union.

You can find it here: designforenterprises.eu

The author of this module is Marinella Ferrara. She is a professor of Industrial Design at the Politecnico di Milano and coordinator of the Material Design Culture Research Center at the Design Department.
She said: Today one starting point for innovation is to pay attention on new materials and their performance.

The module Design for Material cover a strategic skill for Small and Medium Enterprises or start-ups or involved in design: how to use innovative materials bringing competitive advantage and opening up new markets for your products and services.
The module clarifies the several factors to consider developing or choosing a material for consumer products. And help you to apply a systematic approach of material innovation into your business to make sure that people will love your products.

You will learn that material performance is also based on sensorial perception, consumers experience, and cultural values. And you will look at materials with different eyes.

Material innovation requires both technological exploration and a broader understanding of its meaningful application for consumers. So it becomes strategic to foresee trends of innovation driven by social, cultural, economic and environmental drivers. Then, you will learn how to manage a design process where different actors, like scientists, suppliers, creative communities and consumers are becoming deeply engaged.

Design for Material module is divided into five sections:
1. Why design for material?
2. About material performances and user emotions
3. Design contribution to materials research
4. Creativity-driven material innovation methodology
and finally (5) a special focus on a selection of materials that will change the future.

In every section, case studies are presented. And you will learn from start-ups and Small and Medium enterprises that applying the creative approach, thus winning the creative challenge of product innovation, achieving both product functionality, material distinctiveness and clarity of message.

A case in point is a young Italian company called Wood-skin, that patented a new composite material based on wood that combines the rigidity of the traditional material with the flexibility of textile, allowing different applications like customizable architectural and design products.



di Stefano Parisi

Eterni, statici, freddi. Marmi, pietre e graniti sono spesso considerati materiali caratterizzati da un’identità ben consolidata e immutabile. Tuttavia grazie allo sviluppo di tecniche produttive, come le sempre più diffuse tecnologie a controllo numerico, e all’integrazione del processo creativo è possibile ampliarne le possibilità espressive, conferendo una nuova dimensione esperienziale e identitaria e stravolgendo le convenzioni.

Questo approccio è stato il fulcro del workshop “Marble Visions. Material Design for Living Futures” che tra il 2 e il 6 maggio si è tenuto presso il Politecnico di Milano in collaborazione con MADEC e l’azienda siciliana Campo Marmi di Giovanni Campo che da quattro generazioni si occupa di lavorazioni di materiali lapidei locali, nazionali e internazionali per l’edilizia e che sotto la guida del figlio Giuseppe si è posta una nuova sfida: la produzione di una collezione di arredi e complementi in materiali lapidei per l’abitare contemporaneo in cui ricerca per il futuro e tradizione siano coniugati.
46 studenti del Corso di Laurea in Design del Prodotto Industriale, provenienti da 9 nazionalità diverse, sono stati guidati in cinque intense giornate dai docenti Prof.ssa Marinella Ferrara e Prof. Vincenzo Castellana e dal tutor Stefano Parisi.

Punto di partenza dei progetti: il materiale.

1. samples tasting

4. laboratotio

“Un’attività fondamentale nel workshop è stata sottoporre agli studenti i campioni di materiali” spiega la docente e coordinatrice del workshop Marinella Ferrara “Interagendo con i diversi materiali gli studenti hanno potuto conoscerne in modo diretto le proprietà tecniche e le qualità sensoriali comprendendone i limiti e le possibilità”.
A partire da questo momento di scoperta dei materiali gli studenti sono stati guidati nello sviluppo e definizione di “visioni materiche” allo scopo di narrare, plasmare e caratterizzare i materiali lapidei secondo inedite modalità espressive in grado di esaltare la sensorialità dei materiali al fine di creare un’esperienza ricca, stimolante ed emozionante.

2. revisioni

3. laboratorio

Parallelamente gli studenti hanno portato avanti un processo di analisi del vivere contemporaneo, evidenziando criticità e possibilità e prevedendo futuribili comportamenti e contaminazioni. Esito del workshop sono 13 collezioni di complementi d’arredo che intendono essere potenziali generatori di nuovi comportamenti assecondando azioni emergenti e rituali codificati o in mutazione nel paesaggio domestico contemporaneo nell’indoor e outdoor. Durante l’ultima giornata di workshop i progetti sono stati presentati all’azienda Campo Marmo.

“È notevole la creatività applicata dagli studenti e che ha permesso di generare idee fresche e innovative sia tecnicamente che esteticamente” affermano Giovanni e Giuseppe Campo sottolineando il valore del contributo che giovani professionisti e studenti di design possono offrire a un’azienda di piccole-medie dimensioni e auspicando di proseguire in questa direzione”

6. esame

5. esame

7. esame

8. esame 2

9. esame

10. esame





“MARBLE VISIONS” material design for living futures

Scuola del Design del Politecnico di Milano & MADEC
in partnership con Campo Marmi


Dal 2  al 6 maggio 2016  il workshop MARBLE VISIONS: material design for living futures dedicato alle nuove visioni progettuali del product design dedicate al marmo.

Docente responsabile: Prof.ssa Marinella Ferrara
Visiting Professor: Vincenzo Castellana
Tutor: Stefano Parisi

Politecnico di Milano // Design School
Corso di Laurea in Design del Prodotto
Design Workshop // sez. P2
Maggio 2016


Stone Reinforced Ecoconcrete Open innovation project

Le Idee e la Materia 2016 presenta:

Stone Reinforced Ecoconcrete
Open innovation project

Giovedì 12 maggio 2016 | ore 14,30 – 17,00
Aula Gialla / 4° piano | Politecnico di Milano / Dipartimento di Design | via Durando 38/A / Milano – Bovisa

All’evento sarà presentato il progetto per lo sviluppo di un nuovo composito a base di fibre in basalto. Obiettivo dell’incontro è valutare l’interesse di più partner alla partecipazione e al finanziamento della prima fase di lavoro che si concluderà nel novembre 2016.


ore 14.30
Introduzione del gruppo di lavoro e presentazione partecipanti
prof. Marinella Ferrara (Politecnico di Milano / MADEC)

Interventi / collegamento con
Elisa Tonda (Head of the Business and Industry Unit in the UNEP Division of Technology, Industry and Economics Sustainable Consumption and Production Branch
Lucia Chierchia (Open Innovation Director Electrolux Group

Presentazione del progetto
Enrico Benco (GS4C)
prof. Giulio Ceppi (Politecnico di Milano / MADEC)
Intervento di
prof. Roberto Frassine (ASSOCOMPOSITI)

ore 16,00

ore 16.15
Call for participation

ore 17,00
Chiusura lavori